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Abstract. We characterize the possible behaviors at infinity of weak
solutions to the 2D Euler equations in the full plane having bounded
velocity and bounded vorticity. We show that any such solution can be
put in the form obtained by Ph. Serfati in 1995 after a suitable change
of reference frame. Our results build on those of a recent paper of the
author’s, joint with Ambrose, Lopes Filho, and Nussenzveig Lopes.
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1. Introduction

In classical form, the Euler equations (without forcing) can be expressed as ∂tu+ u · ∇u+∇p = 0,
div u = 0,
u(0) = u0.

(1.1)

Here, u is a velocity field, p is a scalar pressure field, and the initial velocity,
u0, is assumed to be divergence-free. We are concerned here exclusively with
solutions in the full plane.

The nature of the solutions to these equations will depend strongly on the
function spaces to which the initial data belongs. For functions spaces for
which well-posedness results are known, nearly all studies have assumed that
the vorticity, ω = curlu := ∂1u

2 − ∂2u1, decays at infinity rapidly enough
that the velocity can be recovered from the vorticity via the Biot-Savart law,

u = K ∗ ω,
where K is the Biot-Savart kernel (see (2.1)). One commonly imposed con-
dition that insures this is that ω ∈ Lp1 ∩Lp2 for some p1 < 2 < p2, in which
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case the velocity will also decay at infinity. (The Biot-Savart law can hold
with some decay of the vorticity but without decay of the velocity at infinity,
and solutions to the Euler equations can still be obtained: see [2].)

We will be concerned here with initial data for which the Biot-Savart
law does not hold, treating the case where the vorticity and velocity are
both bounded: what we call bounded solutions. The construction of such
solutions in the full plane was first decribed by Ph. Serfati in [11], proven in
more detail in [1] (including the case of an exterior domain). An alternate
construction, relying upon another Serfati paper, [12], was given by Taniuchi
in [13].

In each of [11, 13, 1], however, the behavior at infinity of a solution
was assumed either implicitly or explicitly. Identical assumptions, on the
velocity, are made in [11, 1], while [13] makes an assumption on the pressure.
(We describe these assumptions in detail below.) These assumptions are a
priori, in that they are used in the construction of the solutions. The purpose
of this work is to characterize a postierori all possible behaviors of bounded
solutions at infinity, so as to avoid the need for such assumptions a priori.

To understand what types of behavior at infinity we might expect, con-
sider the following two classical solutions (u1, p1) and (u2, p2) to (1.1):

u1(t, x) = u0 + U∞(t), p1(t, x) = −U ′∞(t) · x,
u2(t, x) = u0, p2(t, x) = 0.

(1.2)

Here, U∞ is any differentiable vector-valued function of time for which
U∞(0) = 0. Both are easily verified to be solutions to the Euler (and,
for that matter, Navier-Stokes) equations as in (1.1) with the same initial
velocity, u0. In [8, 9], the authors use these examples to make the point
that to insure solutions are unique, some condition on the pressure must be
imposed for solutions to the Navier-Stokes equations in the plane.

Here, we draw a different lesson from this example, one that leads to a
characterization of all possible bounded solutions to the Euler equations.
We prove that any solution’s behavior at infinity is of necessity very much
like that of (u1, p1).

Specifically, for solutions in the full plane, we show that there exists some
continuous vector-valued function of time, U∞, with U∞(0) = 0, for which

u(t, x)− u(0, x) = U∞(t) + lim
R→∞

(aRK) ∗ (ω(t)− ω(0))(x),

∇p(t, x) = −U ′∞(t) +O(1),

p(t, x) = −U ′∞(t) · x+O(log |x|),

(1.3)

the explicit expression for the O(1) (in |x|) function being given in (2.5). In
(1.3), ω(t) = ∂1u

2(t)−∂2u1(t) is the vorticity (scalar curl) of the velocity field
u(t), K is the Biot-Savart kernel (see (2.1)), and aR is any cutoff function
with support increasing to infinity with R, as in Definition 2.5. The time
derivative on U∞ in (1.3)2,3 is a distributional derivative.
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To explain what (1.3)1 means, we need one basic fact concerning the Biot-
Savart law: If ω ∈ L1∩L∞(R2) then u = K ∗ω is the unique, divergence-free
vector field vanishing at infinity whose vorticity is ω.

The condition that ω be in L1 ∩L∞ can be weakened, but some decay at
infinity is required for the Biot-Savart law to hold. Hence, we have no hope
of applying the Biot-Savart law for our solutions, as we wish to assume no
decay of vorticity. But we will discover a replacement for the Biot-Savart
law that will work, and name it the renormalized Biot-Savart law, defined
as follows:

We say that the renormalized Biot-Savart law holds for a
vector field, v, if there exists a constant vector field, H, such
that

v = H + lim
R→∞

(aRK) ∗ ω(v) (1.4)

pointwise in R2, where ω(v) := ∂1v
2 − ∂2v1.

When ω(v) has sufficient decay at infinity, (1.4) holds without the need
for a cutoff function: we simply obtain v = H + K ∗ ω, with H being the
value of v at infinity.

The relation in (1.3)1, then, says that the renormalized Biot-Savart law
holds for the vector field u(t)− u(0) at any time, t, with H = U∞(t).

The velocity field, U∞, can be eliminated in (1.3) (or in (1.2)1) by chang-
ing to an accelerated frame of reference by the transformation,

x = x(t, x) = x+

∫ t

0
U∞(s) ds,

u(t, x) = u(t, x)− U∞(t), p(t, x) = p(t, x) + U ′∞(t) · x.
(1.5)

(See the first part of Lemma 6.1.) Note that this is a Galilean transformation
when U∞ is constant in time. Setting ω = ω(u), the chain rule gives ω(t, x) =
ω(t, x), and it follows that

u(t, x)− u(0, x) = lim
R→∞

(aRK) ∗ (ω(t)− ω(0))(x),

∇p(t, x) = O(1), p(t, x) = O(log |x|),
(1.6)

and (u, p) satisfy the Euler equations in the sense of distributions. Physi-
cally, this reflects the fact that a change of frame by translation, even an
accelerated translation, introduces a force that is a gradient, and so is ab-
sorbable into the pressure gradient.

Alternately, we can view solutions for which U∞ is not identically zero
to be in an accelerated frame: we then move to an inertial frame, in which
U∞ ≡ 0, by the transformation above. Such solutions in an inertial frame
are identical to those constructed by Serfati in [11]. Observe as well that
the two solutions in (1.2) are the same solution after the transformation in
(1.5).

That U∞ can be eliminated by changing frames in this way is an a poste-
riori conclusion reached only after establishing the existence of such a vector
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field for which (1.3) holds. Since we cannot transform U∞ away until we
obtain it, obtaining it is unavoidable. Moreover, it is in demonstrating that
(1.3) must hold for some U∞ that we say we characterize solutions to the
Euler equations at infinity.

To cast a different light on our characterization of solutions, consider the
special case of sufficiently decaying (say, compactly supported) initial vor-
ticity in the full plane. Then the classical Biot-Savart law applies, and (1.3)1
reduces to u(t) = U∞(t) + K ∗ ω(t). This gives the usual characterization
of solutions to the 2D Euler equations for decaying vorticity whose velocity
at infinity is U∞ (often chosen to be zero). Actually, this is not normally
viewed as a characterization of the solution, but rather as a way of recov-
ering the velocity from the vorticity, and so obtaining a formulation of the
Euler equations solely in terms of the vorticity. This same point of view
applies for our non-decaying bounded solutions as well.

Key to our characterization of the velocity field for a solution, u, to the 2D
Euler equations in the full plane is the observation that any bounded velocity
field, v, having bounded vorticity satisfies the renormalized Biot-Savart law
(1.4) for a subsequence (see Lemma 2.7). Applying this to v = u(t) − u(0)
and using properties of the Euler equations allows us to show that (1.3)1
holds.

Having obtained the characterizations in (1.3)1, the task of establishing
existence and uniqueness immediately arises. We will find this task easy,
however, because existence and uniqueness in the special case of U∞ ≡ 0
was already proved in [1] (for both the full plane and the exterior of a single
obstacle). The transformation in (1.5) makes this especially simple.

The characterizations in (1.3)1 along with existence and uniqueness give
a fairly complete picture of the velocity for bounded solutions to the Euler
equations. For the pressure, we take a much different approach, for we
will not find it possible to directly characterize the pressure as we did the
velocity. Limiting us in this regard is the lack of decay at infinity of the
velocity field (from which the pressure is ultimately derived).

Instead, we will show that the solutions we construct in our proof of
existence also satisfy (1.3)2,3. We do this using the sequence of smooth ap-
proximate solutions, which decay sufficiently rapidly at infinity, and taking
a limit. Because we have uniqueness of solutions using only (1.3)1, it follows
that (1.3)2,3 hold for all bounded solutions. (See [9] for another approach to
dealing with the pressure in the setting of the Navier-Stokes equations for
bounded velocity.)

Let us call a divergence-free bounded velocity field having bounded vortic-
ity a Serfati velocity. The question of whether a given bounded vorticity has
an associated Serfati velocity is a delicate one. A number of examples are
given in [1]: these include some obvious examples, such as doubly-periodic
vorticity integrating to zero on its fundamental domain and vorticity in
L1 ∩ L∞, as well as some less obvious ones, such as the characteristic func-
tion of an infinite strip. Asking whether a bounded initial velocity is Serfati
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is a less delicate question, as one need only compute its scalar curl. Any
Lipschitz divergence-free vector field is a Serfati velocity. From such an ini-
tial velocity one can obtain a unique solution, but with only the vorticity
bounded. The same is true for initial velocity in C1, but existence and
uniqueness in Cloc(R;C1,α) was shown in[12].

We say now a few words about works in the literature pertaining to
bounded solutions to the 2D Euler equations and how they relate to this
work.

Our proof of the existence and uniqueness of solutions in Section 6 is a
modest extension of the proof in [1], which in turn builds on the approach in
[11], where the existence and uniqueness of such solutions was first proved by
Serfati in the full plane. Serfati’s full-plane existence result was extended by
Taniuchi in [13] to allow slightly unbounded vorticity (a localized version of
the velocity fields treated by Yudovich in [15]), while Taniuchi with Tashiro
and Yoneda in [14] established uniqueness (and more). In [1], Serfati’s result
was obtained both for the full plane and for the exterior to a single obstacle.

In each of these papers, the solutions that are constructed have a special
property that is used as a selection criterion to guarantee uniqueness. In
[13, 14], that property is that the pressure belong to BMO and is given by
a Riesz transform in the classical way. (This implies at most logarithmic
growth of the pressure at infinity, as we show.) In [1], an identity ((2.2),
below, with U∞ ≡ 0) that we show is equivalent to (1.3)1 is used. This
identity, called the Serfati identity here and in [1], is implicitly used, though
never explicitly stated, by Serfati both in the construction of a solution (in
the full plane) and to establish uniqueness; the same is done, explicitly, in
[1]. Eliminating the need for this identity was one motivation for this paper.

The main theorem in [11] states the existence and uniqueness of a bounded
vorticity bounded velocity solution to the Euler equations that is unique
among all such solutions having sublinear growth of the pressure at infinity.
What is actually proven in [11], however, is the existence and uniqueness
of a bounded vorticity bounded velocity solution to the Euler equations
satisfying the identity in (2.2). Another motivation for this paper was to
clarify this point by proving the result that Serfati actually stated. This is
the content of Theorems 2.8 and 2.9.

The vanishing viscosity limit of the Navier-Stokes equations to the Euler
equations has been studied for bounded solutions in [4, 5, 6].

Finally, in the recent paper [7], Gallay obtains an identity for a bounded
vorticity bounded velocity vector field, u, that is complementary to the
renormalized Biot-Savart law of (1.4). Rather than cutting off the Biot-
Savart law he truncates the vorticity then takes the limit as R → ∞. To
allow this, he first “tames” the Biot-Savart kernel. He finds that

u(x) = u(0) + lim
R→∞

∫
BR

(K(x− y)−K(y))ω(y) dy.



6 KELLIHER

(For L1 ∩ L∞ vorticity this identity would follow directly from the Biot-
Savart law.) He uses this to (among other things) obtain the linear-in-time
growth of the L∞-norm of the velocity for solutions to the Navier-Stokes
equations with a bound that is uniform in small viscosity and hence applies
in the limit of zero viscosity to the Euler equations.

This paper is organized as follows:
In Section 2 we define our bounded solutions to the 2D Euler equations

and state our main results. We summarize some background facts and defi-
nitions in Section 3 that we will use throughout the paper.

Section 4 contains a proof of the renormalized Biot-Savart law, which
we use in in Section 5 to characterize bounded solutions for the full plane.
The proof of existence and uniqueness is given in Section 6. In Section 7, we
establish the properties of the pressure for the full plane. The formula for the
pressure gradient in the full plane is the same as that in [12], and is based on
the Green’s function for the Laplacian. The most delicate estimates, those
characterizing the behavior of the pressure itself at infinity, we obtain using
a Riesz transform. These estimates are presented in Section 8.

2. Statement of results

Before we can state our results, we must make several definitions.
For a velocity field, u, the vorticity, ω(u) = curl(u) := ∂1u

2 − ∂2u1.
Let G(x, y) = (2π)−1 log |x− y|, the fundamental solution to the Lapla-

cian in R2. Then the Biot-Savart kernel in the full plane is given by

K(x) = ∇⊥G(x) =
1

2π

x⊥

|x|2
, (2.1)

where ∇⊥ := (−∂2, ∂1) and x⊥ := (−x2, x1). When ω is a compactly sup-
ported, bounded scalar field, we define

K[ω] = K ∗ ω.
Then K[ω] is the unique, divergence-free vector field vanishing at infinity
whose vorticity is ω.

Definition 2.1. We say that a divergence-free vector field, u ∈ L∞(R2),
with vorticity, ω(u) ∈ L∞(R2) is a Serfati velocity. We call the space of all
such vector fields, S = S(R2), with the norm,

‖u‖S = ‖u‖L∞ + ‖ω(u)‖L∞ .

Definition 2.2. We say that a sequence, (un), in L∞(0, T ;S) converges
locally in S if for any compact subset, L, of R2,

‖un − u‖L∞([0,T ]×L) + ‖ω(u)− ω(un)‖L∞([0,T ]×L) → 0.

We will use the following definition for solutions in the full plane:
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Definition 2.3. Fix T > 0. We say that a velocity field, u, lying in
L∞(0, T ;S) ∩ C([0, T ] × R2) having vorticity, ω = ω(u), is a bounded so-
lution to the Euler equations without forcing if, on the interval, [0, T ],
∂tω + u · ∇ω = 0 as distributions on (0, T )× R2.

Remark 2.4. Because the velocity, u, of Definition 2.3 lies in L∞(0, T ;S)∩
C([0, T ]×R2), it follows from Lemma 3.5 that u has a spatial log-Lipschitz
modulus of continuity (MOC) with a uniform bound over [0, T ] and thus
that it has a unique classical flow map. Moreover, this flow map is measure-
preserving and the vorticity is transported by the flow map.

Definition 2.5. Let a be a radially symmetric, smooth, compactly sup-
ported function with a = 1 in a neighborhood of the origin. We will refer
to such a function simply as a radial cutoff function. For any R > 0 we
define

aR(·) = a(·/R).

Definition 2.6. For v, w vector fields, we define v ∗·w = vi ∗ wi. For
A, B matrix-valued functions on R2, we define A ∗·B = Aij ∗ Bij . Here,
and throughout this paper, we use the convention that repeated indices are
summed over.

Our main results are Lemma 2.7, Theorem 2.8, and Theorem 2.9.

Lemma 2.7. Assume that u lies in the Serfati space, S, of Definition 2.1.
Let ω = ω(u) and define

uR = (aRK) ∗ ω.

Then ω(uR) → ω(u) in L∞ with ‖ω(uR)− ω(u)‖L∞ ≤ C ‖u‖L∞ R−1, and
there exists a subsequence, (Rk), Rk → ∞, and a constant vector field, H,
such that uRk → u+H as k →∞ uniformly on compact subsets.

Theorem 2.8 (Characterization of solutions). Suppose that u is a solution
to the Euler equations as in Definition 2.3 in the full plane with initial
velocity, u(t = 0) = u0 ∈ S, and initial vorticity, ω0 = ω(u0). There exists
U∞ ∈ (C[0, T ])2 with U∞(0) = 0, such that each of the following holds:
(i) Serfati identity: for j = 1, 2,

uj(t)− (u0)j = U j∞(t) + (aKj) ∗ (ω(t)− ω0)

−
∫ t

0

(
∇∇⊥

[
(1− a)Kj

])
∗·(u⊗ u)(s) ds.

(2.2)

(ii) Renormalized Biot-Savart law:

u(t)− u0 = U∞(t) + lim
R→∞

(aRK) ∗ (ω(t)− ω0) (2.3)

on [0, T ] × R2 for all radial cutoff functions, a, as in Definition 2.5. The
convergence in (2.3) is locally uniform in S as in Definition 2.2.
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(iii) There exists a pressure field p ∈ D′((0, T )×R2) with ∇p+U ′∞ lying in
L∞([0, T ]× R2), such that

∂tu+ u · ∇u+∇p = 0 (2.4)

as distributions on (0, T )×R2. Here, ∂tu−U ′∞ ∈ L∞(0, T ;Lrloc(R2)) for all
r in [1,∞). (Note that U ′∞ ∈ (D′((0, T )))2.)
(iv) For any radial cutoff function, a, as in Definition 2.3,

∇p(t, x) = −U ′∞(t) +

∫
R2

a(x− y)K⊥(x− y) div div(u⊗ u)(t, y) dy

+

∫
R2

(u⊗ u)(t, y) · ∇y∇y
[
(1− a(x− y))K⊥(x− y)

]
dy.

(2.5)

Also, ‖∇p(t) + U ′∞(t)‖L∞ ≤ C‖u0‖2S.
(v) Pressure growth at infinity: The pressure, p, can be chosen so that

p = −U ′∞ · x−R(u⊗ u), (2.6)

where R = ∆−1 div div is a Riesz transform on 2×2 matrix-valued functions
on R2. Moreover,

p(t, x) + U ′∞(t) · x ∈ L∞([0, T ];BMO) (2.7)

with

p(t, x) = −U ′∞(t) · x+O(log |x|), (2.8)

Theorem 2.9. Assume that u0 ∈ S, let T > 0 be arbitrary, and fix U∞ ∈
(C[0, T ])2 with U∞(0) = 0. There exists a bounded solution, u, to the Euler
equations as in Definition 2.3, and this solution satisfies (i)-(v) of Theo-
rem 2.8. This solution is unique among bounded all solutions with u(0) = u0

that satisfy any one of the following uniqueness criteria:

(a) (i) of Theorem 2.8 holds;
(b) (ii) of Theorem 2.8 holds;
(c) there exists a pressure satisfying (2.4, 2.6) for which (2.7) holds;
(d) there exists a pressure satisfying (2.4, 2.6) for which ∇p + U ′∞ ∈

L∞([0, T ]× R2) and (2.8) holds.

Remark 2.10. Radial symmetry of the cutoff function, a, simplifies some
of our proofs, so we adopt it, but it is not a necessary assumption.

Theorem 2.8 shows that if one has a bounded solution to the Euler equa-
tions then there must be a U∞ for which the solution has the stated prop-
erties. Theorem 2.9 is a kind of converse, which says that if one has a U∞
there does, in fact, exist a bounded solution to the Euler equations that
satisfies one of the properties stated in Theorem 2.8. By the uniqueness in
Theorem 2.9 it then follows that the solutions whose existence is ensured by
that theorem satisfies all of the properties given in Theorem 2.8.

We begin the proof of Theorem 2.8 in Section 5 by establishing proper-
ties (i) and (ii), thereby characterizing the velocity for bounded solutions
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in the full plane. Theorem 2.9, giving the existence of solutions along with
uniqueness of such solutions that satisfy (2.2), follows easily from the con-
struction of Serfati solutions in [1] and the transformation in (1.5): this is
explained in detail in Section 6. It follows from this uniqueness, then, that
any further properties we can establish for the Serfati solutions constructed
in [1], modified by (1.5), must hold for our bounded solutions. In Section 7
we establish some such properties; namely, those of the pressure appearing
in (iii)-(v) of Theorem 2.8.

The formula for the pressure gradient in the full plane is the same as that
in [12], and is based on the Green’s function for the Laplacian. The most
delicate estimates, those characterizing the behavior of the pressure itself at
infinity, we obtain using Riesz transforms in the full plane. These estimates
appear in Section 8.

Remark 2.11. It is possible to obtain results analogous to Lemma 2.7, The-
orem 2.8, and Theorem 2.9 for the exterior to a simply connected obstacle;
this is the subject of a future work.

3. Background Material

In this section we present definitions and bounds that we will need in the
remainder of this paper.

We have the following estimates on K of (2.1):

Proposition 3.1. We have,

|K(x− y)| ≤ C

|x− y|
. (3.1)

Let a be a radial cutoff function. There exists C > 0 such that for all ε > 0,∥∥∇yaε(x− y)⊗∇yKi(x− y)
∥∥
L1
y(R2)

≤ Cε−1, (3.2)

‖∇y∇y [(1− aε(x− y))K(x− y)]‖L1
y(R2) ≤ Cε

−1. (3.3)

Let U ⊆ R2 have measure 2πR2 for some R <∞. Then for any p in [1, 2),

‖K(x− ·)‖pLp(U) ≤
R2−p

2− p
. (3.4)

Proof. The bound in (3.1) is immediate from (2.1). For the bounds in (3.2-
3.4) see [1]. �

Definition 3.2. A nondecreasing continuous function, µ : [0,∞) → [0,∞),
is a modulus of continuity (MOC) if µ(0) = 0 and µ > 0 on (0,∞).

Definition 3.3 is a generalization of Hölder-continuous functions.

Definition 3.3. Let µ be a MOC. Define

Cµ = Cµ(R2) = {f ∈ Cb(R2) : ∃ c0 > 0 s.t. ∀x, y ∈ R2,

|f(x)− f(y)| ≤ c0µ(|x− y|)}
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with

‖f‖Cµ = ‖f‖L∞ + ‖f‖Ċµ ,

where

‖f‖Ċµ = sup
x 6=y

|f(x)− f(y)|
µ(|x− y|)

.

We define Log-Lipschitz functions explicitly by using the MOC,

µLL(r) =

{
−r log r, if r ≤ e−1,

e−1, if r > e−1,
(3.5)

setting LL = CµLL .

Definition 3.4. Given a MOC, µ, we define,

Sµ(x) =

∫ x

0

µ(r)

r
dr.

We say that µ is Dini if Sµ is finite for some (and hence all) x > 0. (Note
that when µ is Dini, Sµ is itself a MOC.) A function is Dini-continuous if
it has a Dini MOC.

Lemma 3.5 gives the MOC for a bounded velocity field and a bound on
its gradient.

Lemma 3.5. Suppose u ∈ S. Then u ∈ LL with ‖u‖LL ≤ C ‖u‖S. More-
over, for any bounded domain D ⊆ R2 and any p ∈ (1,∞),

‖∇u‖Lp(D) ≤ C |D|
1/p p2

p− 1
‖u‖S .

Proof. See [1]. �

Let S ′ = S ′(R2) be the space of tempered distributions and E ′ = E ′(R2)
be the subspace of compactly supported tempered distributions. We make
frequent use of the following classical result:

Lemma 3.6. Suppose that f ∈ E ′ and g ∈ S ′. Then f ∗ g = g ∗ f lies in S ′
and

Dα(f ∗ g) = Dαf ∗ g = f ∗Dαg

for all multi-indices, α.

4. The renormalized Biot-Savart law

In this section we prove Lemma 2.7 after establishing several lemmas. The
first of these gives some basic facts regarding the Biot-Savart kernel treated
as a tempered distribution.

Lemma 4.1. We have, divK = div(aRK) = 0 and

ω(aRK) = δ +∇⊥aR ·K.
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Proof. Formally,

divK = div∇⊥G = 0,

div(aRK) = aR divK +∇aR ·K = 0,

ω(aRK) = −div(aRK
⊥) = −∇aR ·K⊥ − aR divK⊥

= ∇⊥aR ·K + aR div∇G = ∇⊥aR ·K + δ,

and these can all be proved to hold as equality of distributions by applying
test functions. �

Lemma 4.2. Let α, β be multi-indices with |α| ≥ 1 and |β| ≥ 0. Then

‖DαaR ⊗DβK‖L1 ≤ CR1−|α|−|β|.

Moreover, if F ∈ L∞(R2) then

‖(DαaR ⊗DβK) ∗ F‖L∞ ≤ C ‖F‖L∞ R
1−|α|−|β|.

Proof. The L1-bound follows because DαaR is supported on an annulus of
inner radius, c1R, and outer radius, c2R, for some 0 < c1 < c2, and is
bounded by CR−α on this annulus, while |∂βK| ≤ CR−β−1 on this annu-

lus. The bound (DαaR ⊗DβK) ∗ F then follows from Young’s convolution
inequality. �

Lemma 4.3. For all f ∈ E ′, v ∈ (S ′)2,

∇f ∗· v = f ∗ div v,

where the ∗· operator is as in Definition 2.6.

Proof. Using Lemma 3.6,

∇f ∗· v = ∂if ∗ vi = f ∗ ∂ivi = f ∗ div u.

�

Lemma 4.4 allows us to move the curl operator from the velocity field onto
the compactly supported distribution, aRK. Even formally, this equality
does not follow immediately, and is, in fact, true only when aR is radially
symmetric (see Remark 4.5).

Lemma 4.4. For any u ∈ S, (aRK) ∗ ω(u) = ω(aRK) ∗ u.

Proof. We will show that w := (aRK) ∗ ω(u)− ω(aRK) ∗ u = 0. We have,

wi = (aRK
i) ∗ (∂1u

2 − ∂2u1)− (∂1(aRK
2)− ∂2(aRK1)) ∗ ui

= ∂1(aRK
i) ∗ u2 − ∂2(aRKi) ∗ u1 − (∂1(aRK

2)− ∂2(aRK1)) ∗ ui.
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Then,

w1 = ∂1(aRK
1) ∗ u2 − ∂2(aRK1) ∗ u1 − (∂1(aRK

2)− ∂2(aRK1)) ∗ u1

= ∂1(aRK
1) ∗ u2 − ∂1(aRK2) ∗ u1

= (∂1aRK
1) ∗ u2 − (∂1aRK

2) ∗ u1 + (aR∂1K
1) ∗ u2 − (aR∂1K

2) ∗ u1

= (∂1aRK
1) ∗ u2 − (∂1aRK

2) ∗ u1 − (aR∂2K
2) ∗ u2 − (aR∂1K

2) ∗ u1

= (∂1aRK
1) ∗ u2 − (∂1aRK

2) ∗ u1 + (∂2aRK
2) ∗ u2 + (∂1aRK

2) ∗ u1

− ∂2(aRK2) ∗ u2 − ∂1(aRK2) ∗ u1

= (∂1aRK
1) ∗ u2 + (∂2aRK

2) ∗ u2 −∇(aRK
2) ∗·u

= (∇aR ·K) ∗ u2 = 0,

since ∇aR · K = 0, aR being radially symmetric (note that ∇aR · K is
integrable). In the fourth equality we used divK = 0 from Lemma 4.1,
and we applied Lemma 4.3 in the penultimate equality to deduce that
∇(aRK

2) ∗·u = (aRK
2) ∗ div u = (aRK

2) ∗ 0 = 0. Similarly,

w2 = −(∇aR ·K) ∗ u1 = 0.

�

Remark 4.5. The radial symmetry of a was convenient in the proof of
Lemma 2.7, but was not essential. Were a not radially symmetric, an ap-
plication of Lemma 3.6 would give (∇aR · K) ∗ ω = (∇⊥(∇aR · K)) ∗·u.
This is O(R−1) by Lemma 4.2 (and the product rule), so div uR → 0 in
L∞(R2), which yields div u = 0. Also, Lemma 4.4 would become uR =
ω(aRK) ∗ u − (∇aR · K) ∗ u⊥, but the extra term (∇aR · K) ∗ u⊥ can be
handled just as (∇⊥aR ·K) ∗ u is.

Proof of Lemma 2.7. First observe that uR is well-defined as a tempered
distribution by Lemma 3.6, since aRK ∈ E ′. Also by that lemma and
Lemma 4.1,

div uR = (div(aRK)) ∗ ω = 0 ∗ ω = 0.

Then, from Lemmas 4.1 and 4.4,

uR = ω(aRK) ∗ u

= (δ +∇⊥aR ·K) ∗ u = u+ (∇⊥aR ·K) ∗ u.

But, (∇⊥aR ·K) ∗ u is O(1) by Lemma 4.2, so (uR) is bounded in L∞.
Since also ω((∇⊥aR ·K) ∗ u) = O(R−1) by Lemma 4.2, we have

ω(uR) = O(R−1) + ω(u).

We conclude both that ω(uR)→ ω(u) in L∞ and that (uR), already bounded
in L∞, is bounded in S.

By Lemma 3.5, then, (uR) is an equicontinuous family of pointwise bounded
functions and hence for any compact subset, L, of R2 some subsequence of
(uR) converges uniformly on L. A diagonalization argument for increasing
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L gives a subsequence, (uRk), that converges uniformly on compact subsets
to some u in L∞. At the same time, as shown above, ω(uR) → ω(u) and
div uR = 0.

Fix a compact subset, L, of R2 and let ϕ ∈ H1
0 (L). Then

(ω(uRk), ϕ) = −(div u⊥Rk , ϕ) = (u⊥Rk ,∇ϕ)→ (u⊥,∇ϕ) = (ω(u), ϕ).

But also (ω(uR), ϕ) → (ω(u), ϕ), so ω(u) = ω(u) on L and hence on all of
R2, since L was arbitrary. Similarly, div u = div u = 0.

Thus, div(u− u) = 0 and ω(u− u) = 0. By the identity, ∆v = ∇ div v +
∇⊥ω(v), then, ∆(u−u) = 0, and we conclude that u = u+H, where H is an
harmonic polynomial. Since u and u lie in L∞, H must be a constant. �

5. Characterization of velocity at infinity

In this section we prove (i) and (ii) of Theorem 2.8 on the characterization
of velocity at infinity. The proof rests upon the equivalence between the
renormalized Biot-Savart law and the Serfati identity as given in Proposi-
tion 5.1, which we first state, returning to its proof following the proof of
(i) and (ii) of Theorem 2.8.

Proposition 5.1. Suppose that u is a solution to the Euler equations in the
full plane as in Definition 2.3. If u satisfies (2.2) for some U∞ then (2.3)
holds, the convergence being uniform on compact subsets of [0, T ]×R2. Con-
versely, if (2.3) holds for a subsequence for some U∞, the convergence being
pointwise for any fixed t ∈ [0, T ], then u satisfies (2.2). The subsequence is
allowed to vary with t ∈ [0, T ].

Remark 5.2. It follows from Proposition 5.1 that if (2.3) holds for a sub-
sequence, the convergence being pointwise for any fixed t ∈ [0, T ], then the
convergence actually holds for the full sequence and is uniform on compact
subsets of [0, T ]× R2.

Proof of Theorem 2.8 (i, ii). Suppose that u is a solution to the Eu-
ler equations as in Definition 2.3 and a is any radial cutoff function as in
Definition 2.5. Then from Lemma 2.7 there exists a subsequence, (Rk), for
which

u(t)− u0 = U∞(t) + lim
k→∞

(aRkK) ∗ (ω(t)− ω0)

for some vector field, U∞(t). By Proposition 5.1 and Remark 5.2, the limit
then holds for the entire sequence, uniformly on compact subsets of [0, T ]×
R2, both (2.2, 2.3) hold, and U∞ ∈ C([0, T ]). Appealing to Lemma 2.7 once
more, we see that the limit in (2.3) holds locally in S (in fact, the vorticities
converge in L∞(R2)). By Proposition 5.3, U∞ is independent of the choice
of cutoff function, a.

It then follows from (2.2), the transport of the vorticity by the flow map,
the boundedness of the velocity, the absolute continuity of the integral, the
continuity of u in L∞([0, T ]), and the continuity of U∞, that U∞(0) = 0. �



14 KELLIHER

To prove Proposition 5.1 we must first establish the independence of the
Serfati identity on the choice of cutoff function, as given in Proposition 5.3.
Its proof rests upon a technical lemma, Lemma 5.4, which we state and
prove last.

Proposition 5.3. Suppose that u is a solution to the Euler equations in
the full plane as in Definition 2.3 and that (2.2) holds for one, given cutoff
function, a. Then (2.2) holds for any other cutoff function, b.

Proof. Let Ra(t, x) be the right-hand side of (2.2) for the cutoff function, a,
and note that it is always finite for any u in L∞(0, T ;S). Letting h(y) =
(a(y) − b(y))Kj(y), j = 1 or 2, h lies in H2(R2) and has compact support,
so by Lemma 5.4,

Rb(t,x)−Ra(t, x)

= −h ∗ (ω(t)− ω0)(x)−
∫ t

0
(∇∇⊥h) ∗·(u⊗ u)(s, x) ds = 0.

�

Proof of Proposition 5.1. Assume that (2.2) holds. Because the vortic-
ity is transported by the flow map and the velocity is continuous in time
and space, both integrals in (2.2) are continuous as functions of t and x.
Therefore, it must be that U∞ ∈ C([0, T ]).

By Proposition 5.3, (2.2) holds for aR in place of a for all R > 0. Taking
the limit as R → ∞ and applying (3.3) gives (2.3), the convergence being
uniform on compact subsets of [0, T ]× R2.

Now assume that (2.3) holds for a subsequence, (Rk), with the conver-
gence being pointwise for any fixed t ∈ [0, T ]. Because t is fixed in the
argument that follows, it does not matter whether the subsequence varies
with time. Fixing x in R2 and letting h(y) = (aRk − a)(x − y)Kj(x − y),
j = 1 or 2, Lemma 5.4 gives

((aRk − a)Kj) ∗ (ω(t)− ω0)

=

∫ t

0
∇∇⊥

[
(aRk − a)Kj

]
∗·(u⊗ u)(s) ds.

(5.1)

Because of (2.3), as k →∞, the left hand side of (5.1) converges to

uj(t, x)− (u0)j(x)− U∞(t)− (aKj) ∗ (ω(t)− ω0).

The right-hand side of (5.1) can be written,∫ t

0
∇∇⊥

[
(1− a)Kj

]
∗·(u⊗ u)(s) ds

−
∫ t

0
∇∇⊥

[
(1− aRk)Kj

]
∗·(u⊗ u)(s) ds.

Applying (3.3) with Young’s convolution inequality to the second term above
we see that it vanishes as Rk →∞ (here, we need only that u ∈ L∞([0, T ]×



BOUNDED VORTICITY, BOUNDED VELOCITY 2D EULER 15

R2). Taking the limit as k →∞, then, it follows that (2.2) holds and hence
also, as observed above, U∞ ∈ C([0, T ]). �

Lemma 5.4. Let h ∈ H2(R2) have compact support. Assume that u is a
bounded solution to the Euler equations as in Definition 2.3. Then

h ∗ (ω(t)− ω0) = −
∫ t

0
(∇∇⊥h) ∗·(u⊗ u)(s) ds. (5.2)

Proof. Note that the compact support of h gives the finiteness of both con-
volutions in (5.2). We give the formal proof, suppressing the approximation
argument that is needed because of the low time regularity of ω.

Let hx = h(x− ·). We have,∫ t

0

∫
R2

∂tω hx = −
∫ t

0

∫
R2

div((u · ∇u)⊥)hx = −
∫ t

0

∫
R2

(u · ∇u)⊥ · ∇hx

=

∫ t

0

∫
R2

(u · ∇u) · ∇⊥hx.

Using the vector identity, (u · ∇u) · V = u · ∇(V · u) − (u · ∇V ) · u with
V = ∇⊥hx gives∫

R2

(u · ∇u) · ∇⊥hx =

∫
R2

u · ∇(∇⊥hx · u)−
∫
R2

(u · ∇∇⊥hx) · u

= −
∫
R2

(u · ∇∇⊥hx) · u.
(5.3)

The one integral vanished because div u = 0 and hx is compactly supported.
We conclude from this that∫ t

0

∫
R2

∂tω hx = −
∫
R2

(u · ∇∇⊥hx) · u = −
∫ t

0

∫
R2

(∇∇⊥hx) · (u⊗ u).

But also, ∫ t

0

∫
R2

∂tω hx =

∫
R2

(ω(t)− ω0)hx,

from which (5.2) follows. �

6. Existence and uniqueness

Our proof of Theorem 2.9 begins with the following lemma:

Lemma 6.1. Let (u, p) and (u, p) be related as in the transformation, (1.5).
Then (u, p) satisfy (1.1) if and only if (u, p) satisfy (1.1). Moreover, u is a
bounded solution to the Euler equations as in Definition 2.3 if and only if u
is such a solution.
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Proof. Applying the chain rule gives,

∂tu(t, x) = ∂tu(t, x) + U∞(t) · ∇u(t, x)− U ′∞(t),

∇u(t, x) = ∇u(t, x),

∇p(t, x) = ∇p(t, x) + U ′∞(t),

div u(t, x) = div u(t, x),

from which it follows that

∂tu(t, x) + u(t, x) · ∇u(t, x) +∇p(t, x)

= ∂tu(t, x) + u(t, x) · ∇u(t, x) +∇p(t, x).

Thus, (u, p) satisfies (1.1) if and only if (u, p) satisfies (1.1) (since U∞(0) =
0).

Let ω = curlu. Then the chain rule gives

ω(t, x) = ω(t, x),

∂tω(t, x) = ∂tω(t, x) + ∂tx · ∇ω(t, x)

= ∂tω(t, x) + U∞(t) · ∇ω(t, x),

∇ω(t, x) = ∇ω(t, x),

from which it follows that

∂tω(t, x) + u(t, x) · ∇ω(t, x) = ∂tω(t, x) + u(t, x) · ∇ω(t, x).

Hence, the vorticity equation of the Euler equations is satisfied in Defini-
tion 2.3 for u if and only if it is satisfied for u. �

Proof of Theorem 2.9. Assume that u0 ∈ S, let T > 0 be arbitrary, and
fix U∞ ∈ (C[0, T ])2 with U∞(0) = 0. Let u0 = u0 − U∞(0) = u0, and let u
be the Serfati solution with initial velocity u0 constructed in [1]. Then, as
shown in [1], u is the unique bounded solution satisfying (i) of Theorem 2.8
with U∞ ≡ 0. As we saw in Section 5, (ii) is equivalent to (i), and so also
holds. Making the inverse change of variables from that in (1.5) then yields
a bounded solution, (u, p), satisfying (i) and (ii) with the original U∞. This
also gives uniqueness criteria (a) and (b).

That (iii)-(v) hold for (u, p) will be shown when we establish the proper-
ties of the pressure in Section 7.

Uniqueness criteria (c) is proved, for U∞ ≡ 0, in [14], and it can also be
adapted to a nonzero U∞ using the change of variables in (1.5). Finally, we
observe that uniqueness criteria (d) immediately implies (c). �

Remark 6.2. The solution, u, constructed in [1] (and hence, by uniqueness,
any such solution) also has the property that

‖u(t)‖L∞ ≤ e
C(1+‖ω0‖L∞ )t‖u0‖L∞ .
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(In [7] this estimate is improved to be linear in time.) Also, ‖ω(u)(t)‖L∞ =
‖ω0‖L∞ , since vorticity is transported by the flow map. Hence,

‖u(t)‖S ≤ e
C(1+‖ω0‖L∞ )t‖u0‖S .

Then, since ‖u(t)‖S = ‖u(t)− U∞(t)‖S ≤ ‖u(t)‖S + ‖U∞(t)‖, we have

‖u(t)‖S ≤ CS(t)‖u0‖S + ‖U∞(t)‖ , where CS(t) = eC(1+‖ω0‖L∞ )t. (6.1)

The convenient transformation in (1.5) allowed us to simply use the exis-
tence and uniqueness theorem of [1], avoiding the need to modify its proof
to accommodate U∞ 6≡ 0. To establish the properties of the pressure in The-
orem 2.8, however, we need the approximate sequence of smooth velocities,
(un), used in [1] to obtain existence of a solution. Adjusting the sequence
in [1] to accommodate U∞ by employing a sequence, (Un∞), converging to
U∞ leads to a sequence, (un), of approximate classical solutions with the
following properties:

(un) is bounded in C([0, T ]× S),

un → u uniformly on compact subsets of [0, T ]× R2,

ω(un)→ ω(u) in Lploc(R
2) for all p in [1,∞),

un(t, x) = Un∞(t) +O(|x|−1),
Un∞ → U∞ in C([0, T ]),

(Un∞)′ → U ′∞ in D′((0, T )).

(6.2)

We will use these properties in Section 7.

7. The pressure

In this section, we characterize the pressure for solutions to the 2D Euler
equations in the full plane as in (1.3)2,3, stated more precisely as properties
(iii)-(v) of Theorem 2.8.

To understand the difficulties in characterizing the asymptotic behavior
of the pressure at infinity, consider first the simpler case of a smooth solu-
tion, u, to the Euler equations having compactly supported vorticity with u
vanishing at infinity. In such a case, u decays like C |x|−1 at infinity, while

∇u decays like C |x|−2 (as in Lemma 7.5).
Taking the divergence of ∂tu+u ·∇u+∇p = 0, we see that p is a solution

to ∆p = −div(u · ∇u) = −div div(u⊗ u). A particular solution is given by
q = R(u ⊗ u) for the (multiple) Riesz transform, R = −∆−1 div div. Any
other solution differs from q by an harmonic polynomial, h(t), so p = h+ q.

The decay of u gives u⊗ u ∈ Lr(R2) for all r ∈ (1,∞]. By the Calderón-
Zygmund theory, then, q ∈ Lr(R2) for all r ∈ (1,∞), so it decays at infinity.
Moreover, ∇q = T (u ·∇u), where T = −∆−1∇ div is also a singular integral
operator of Calderón-Zygmund type. From the decay of u · ∇u follows the
decay of ∇q at infinity. Then the decay, after integrating in time, of ∂tu +
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u · ∇u at infinity forces h to be constant in space. We conclude that there
exists a unique pressure decaying at infinity.

Now let u be a bounded solution to the Euler equations of Definition 2.3.
We can still obtain a particular solution, q = R(u⊗u), to ∆p = −div div(u⊗
u) using the above argument because R maps L∞ into BMO, and u⊗ u ∈
L∞. A bound on the growth of q at infinity could also be obtained formally
by applying Proposition 7.2 (this lemma is at the heart of the matter), and
rigorously by making a simple approximation argument. Then, arguing as
above, we can conclude that if a valid pressure exists then it differs from q
by an harmonic polynomial, h.

To determine, h, however, we would need to understand the behavior at
infinity of ∂tu + u · ∇u (at least integrated over time) to obtain a pressure
p = q + h satisfying ∂tu + u · ∇u +∇p = 0. But even the behavior of u at
infinity is defined only in the weak sense of (1.3)1; it appears to be impossible
to say anything useful about the behavior of ∂tu+ u · ∇u at infinity.

These difficulties naturally lead us to the idea of using an approximate
sequence of vector fields, (un), decaying sufficiently rapidly at infinity and
converging in an appropriate sense to u. We could construct such a sequence
in an ad hoc manner, but we already have such a sequence at hand: the
sequence of approximate solutions with the properties given in (6.2). This
sequence has the virtue that the approach we described above for obtaining
a pressure applies to it (after making the transformation in (1.5)), so there
exists a corresponding sequence of pressures, (pn), for which ∂tun + un ·
∇un +∇pn = 0. We will show that this sequence of pressures converges to
our desired pressure.

Our proof of (iii)-(v) of Theorem 2.8 begins by proving Propositions 7.1
through 7.3, which establish properties of the pressure for the approximate
solutions, (un), of (6.2). Once we establish these properties, it will remain
only to make an approximation argument to establish the existence of a pres-
sure, p, for the velocity, u, having the same properties as the approximate
sequence of pressures.

Our first proposition provides an explicit expression for the pressure, pn:

Proposition 7.1. Let G(x) = (2π)−1 log |x|, the fundamental solution to
the Laplacian in R2. Let

qn(t, x) = an(t)−G ∗ div div(un(t)⊗ un(t))(x),

pn(t, x) = −(Un∞)′(t) · x+ qn(t, x),
(7.1)

where an(t) is chosen so that pn(t, 0) = qn(t, 0) = 0 for all t. Then ∂tun +
un · ∇un +∇pn = 0.

Proof. This result for Un∞ ≡ 0 is classical (the argument being that given at
the beginning of this section). For nonzero Un∞, we simply use the transfor-
mation in (1.5) and apply the first part of Lemma 6.1. �

Our second proposition bounds the growth of pn (less the harmonic part)
at infinity:
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Proposition 7.2. Let qn be given by (7.1)1. Then,

|qn(t, x)| ≤ CCS(t)‖u0‖2S log(e+ |x|)
for some absolute constant C (in particular, independent of n), where CS(t)
is given in (6.1). Also, qn has a bound on its log-Lipschitz norm uniform
over [0, T ] that is independent of n.

Proof. We can write qn = an(t) − Rhn, where hn = un ⊗ un and R =

∆−1 div div is a Riesz transform. Here, ∆−1f = −F−1(|·|2 f̂), F−1 being
the inverse Fourier transform. Observe that hn ∈ LL with ‖hn(t)‖LL ≤
C ‖u(t)‖2S ≤ CS(t)2‖u0‖2S by Lemma 3.5 and (6.1). The result then follows
from Lemma 8.2, which we prove in the next section. �

Our third proposition give an expression for ∇pn analogous to (2.5) and
shows that it is bounded:

Proposition 7.3. The identity,

∇pn(x) = −(Un∞)′

+

∫
R2

a(x− y)K⊥(x− y) div div(un ⊗ un)(y) dy

+

∫
R2

(un ⊗ un)(y) · ∇y∇y
[
(1− a(x− y))K⊥(x− y)

]
dy,

(7.2)

holds independently of the choice of cutoff function, and ∇pn + (Un∞)′ is
bounded uniformly in L∞([0, T ]× R2).

Proof. Taking the gradient of pn as given in (7.1), we have

∇pn(t, x) = −Vn(t)−
∫
R2

∇xG(x− y) div(un · ∇un)(t, y) dy,

where Vn = (Un∞)′.
For i = 1, 2 let j = 2, 1. Then since −∇xG(x − y) = K⊥(x − y), we can

write

(−1)i∂ipn(x) + (−1)iV i
n =

∫
R2

Kj(x− y) div(un · ∇un)(y) dy.
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Here, we suppress the time variable to streamline notation. Applying a
cutoff and integrating by parts,

(−1)i∂ipn(x) + (−1)iV i
n

=

∫
R2

a(x− y)Kj(x− y) div(un · ∇un)(y) dy

+

∫
R2

(1− a(x− y))Kj(x− y) div(un · ∇un)(y) dy

=

∫
R2

a(x− y)Kj(x− y) div(un · ∇un)(y) dy

−
∫
R2

(un · ∇un)(y) · ∇
[
(1− a(x− y))Kj(x− y)

]
dy.

Integrating as in (5.3) gives

∂ipn(x) + Vn

= (−1)i
∫
R2

a(x− y)Kj(x− y) div(un · ∇un)(y) dy

+ (−1)i
∫
R2

(un(y) · ∇y)∇y
[
(1− a(x− y))Kj(x− y)

]
· un(y) dy,

which we can write more succinctly as (7.2).
Letting q be Hölder conjugate to p with p in (1, 2), we conclude, since

div(un · ∇un) = ∇un · (∇un)T , that∥∥∂ipn + (Un∞)′
∥∥
L∞
≤ ‖aK‖Lp ‖∇un‖2L2q(supp a(x−·))

+ ‖∇y∇y
[
(1− a)Kj

]
‖L1

y
‖un‖2L∞ .

But by Lemma 3.5, ‖∇un‖L2q(supp a(x−·)) ≤ C‖u0n‖S ≤ C‖u0‖S . Given the

uniform bound on un in S it follows from (3.3, 3.4) that ∇pn + (Un∞)′ lies in
L∞([0, T ]× R2) with a bound that is independent of n.

It is easy to verify that the expression in (7.2) is independent of the choice
of cutoff function, a, by subtracting the expression for two different cutoffs
then undoing the integrations by parts. (That (2.5) is independent of the
choice of cutoff function follows the same way.) �

Proof of (iii)-(v) of Theorem 2.8.
Recall that the sequence (un) has the properties in (6.2). Let pn and qn be
as in Proposition 7.1. By Proposition 7.3, (qn) is an equicontinuous family
on [0, T ] × R2, so it follows, via Arzela-Ascoli and a simple diagonalization
argument applied to an increasing sequence of compact subsets of R2, that
a subsequence of (qn), which we relabel to use the same indices, converges
uniformly on compact subsets, and hence as distributions, to some scalar
field, q. Letting p = −U ′∞ · x+ q, it follows that pn → p in D′((0, T )× R2)
and also that p(t, 0) = 0 for all t.

From (6.2)1,2,3 it follows that ∂tun → ∂tu and un · ∇un → u · ∇u in
D′((0, T )× R2). But ∇pn → ∇p in D′((0, T )× R2) and by Proposition 7.1,
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∂tun + un · ∇un + ∇pn = 0, so ∂tu + u · ∇u + ∇p = 0. Thus, p is a valid
pressure field, so we can use p = p.

Because pn → p uniformly on compact subsets, (2.7) holds and the bound
on pn + (Un∞)′ in Proposition 7.2 yields (2.8). That (2.6) holds follows from
Theorem 2 item (1) of [9].

We complete the proof by establishing that (2.5) holds for p and that
∇p+ U ′∞ ∈ L∞([0, T ]× R2).

Let Π be the expression on the right-hand side of (2.5). We will show that
∇pn+U ′n → Π+U ′ in L∞([0, T ]×R2) and hence∇pn → Π in D′((0, T )×R2).
But we already know that pn → p in D′((0, T ) × R2) so ∇pn → ∇p in
D′((0, T ) × R2). We can then conclude that Π = ∇p, that (2.5) holds, and
that ∇p+ U ′ ∈ L∞([0, T ]× R2).

We now show that ∇pn + U ′n → Π + U ′ in L∞([0, T ]× R2).
We write (7.2) with a replaced by aε, where ε is to be determined:

∇pn(t, x) = −(Un∞)′(t) +

∫
R2

aε(x− y)K⊥(x− y) div div(un ⊗ un)(t, y) dy

+

∫
R2

(un ⊗ un)(t, y) · ∇y∇y
[
(1− aε(x− y))K⊥(x− y)

]
dy

=: −(Un∞)′(t) + In1 (ε) + In2 (ε).

The value of ∇pn is independent of our choice of ε, since, by Proposition 7.3,
it is independent of the cutoff function aε. Let I1(ε), I2(ε) be the correspond-
ing integrals on the right-hand side of (2.5).

Let δ > 0, fix p in (1, 2), and let q be Hölder conjugate to p. By
Lemma 3.5,

‖∇u‖L2q(supp aε(x−·)) ≤ Cε
1
q ‖u0‖S ≤ Cε

1
q .

Because div div(u⊗ u) = ∇u · (∇u)T , this bound gives

‖div div(u⊗ u)‖Lq(supp aε(x−·)) ≤ Cε
2
q .

Since |K(x)| = C |x|−1, Hölder’s inequality gives

‖I1(ε)‖L∞ ≤ Cε
2
p
−1+ 2

q = Cε

and, similarly, ‖In1 (ε)‖L∞ ≤ Cε uniformly for all n. Choose ε = δ/(3C) so
that Cε < δ/3. Because un → u uniformly on compact subsets of ([0, T ] ×
R2), there exists N > 0 such that n > N =⇒ ‖I2(ε)− In2 (ε)‖L∞ < δ/3.
(We also use the uniform boundedness of (un) to control the tails of the
integrals in I2(ε), I

n
2 (ε).) Since the value of ∇pn is independent of ε, this

shows that for all n > N ,∥∥∇pn + (Un∞)′ −Π− U ′
∥∥
L∞

≤ ‖I1(ε)‖L∞ + ‖In1 (ε)‖L∞ + ‖In2 (ε)− I2(ε)‖L∞ < δ.
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These bounds are uniform in time and in space; hence, ∇pn + (Un∞)′ →
Π + (U∞)′ in L∞([0, T ] × R2). Thus, ∇pn → Π in D′((0, T ) × R2), since
(Un∞)′ → U ′ in D′((0, T )).

We now have that (2.5-2.8) hold, ∇p + U ′ ∈ L∞([0, T ] × R2), and ∂tu +
u · ∇u+∇p = 0, which completes the proof. �

Remark 7.4. The log-Lipschitz MOC that we obtained in Proposition 7.2 is
a side effect of the manner of proof: it is not as strong as the Lipschitz MOC
we obtain in Proposition 7.3, though that proposition does not establish
decay of pn.

Lemma 7.5. For any n there exists a constant, C > 0, such that

|un(·, x)− U∞(·)|L∞([0,T ]) ≤
C

(1 + |x|)
,

|∇un(·, x)|L∞([0,T ]) ≤
C

(1 + |x|)2
.

Proof. Because ωn is compactly supported there is some R > 0 such that
suppωn ⊆ BR(0). Let |x| > 2R. Then because un is smooth, we have

∇un(x) = (∇K) ∗ ωn(x) =

∫
BR(0)

∇xK(x− y)ωn(y) dy,

noting that the compact support of ω eliminates the singularity in ∇xK(x−
y). But for all y ∈ BR(0),

|∇xK(x− y)| ≤ 1

2π(|x| −R)2
≤ 1

2π(|x| /2)2
≤ 2

π |x|2
so

|∇un(x)| ≤ 2

π |x|2

∫
BR(0)

|ωn(y)| dy =
2

π |x|2
‖ωn‖L1 .

Since un is smooth, ∇un is bounded on B2R(0). The bound on ∇un follows.
The bound on un is obtained similarly. �

8. The Poisson problem

In Section 7, we needed to solve the Poisson problem to obtain the pressure
in the full plane, our interest being in obtaining the asymptotic behavior of
the pressure at infinity. Fortunately, a tool, Lemma 8.1, for obtaining the
MOC of the pressure expressed in terms of a Riesz transform exists in the
literature, and we can use it to obtain this asymptotic behavior. As applied
in Section 7, we do this for the sequence of approximating solutions, which
have sufficient decay at infinity so that the Riesz transforms exist in the
classical sense of principal values of singular integrals.
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Lemma 8.1. Let R be any Riesz transform in R2. Suppose that h lying
in Lp(R2) for some p in [1,∞) has a concave Dini MOC, µ, as in Defini-
tion 3.4. Then Rh has a MOC, ν, given by (see Definition 3.4)

ν(r) = C

(
Sµ(r) + r

∫ ∞
r

µ(s)

s2
ds

)
(8.1)

for some absolute constant, C. (Note that this MOC holds for all r > 0.)

Proof. This type of bound in dimension higher than one appears to have
been first proven by Charles Burch in [3] for a bounded domain (though
the MOC he obtains applies only away from the boundary and r must be
sufficiently small). It is proved in the whole plane in [10]. �

The following corollary of Lemma 8.1 (though not its proof) is inspired
by Lemma 2 of [12].

Lemma 8.2. Let R be a Riesz transform and assume that h is a tensor field
in LL(R2)∩Lp(R2) for some p in [1,∞). Let q = Rh. Then q is uniformly
continuous with the MOC, ν(s) = C ‖h‖LL s(log s)2, for all sufficiently small
s > 0, and |q(x)− q(0)| ≤ C ‖h‖LL log(e+ |x|), for some C > 0.

Proof. Referring to (3.5), since h is bounded and has a log-Lipschitz MOC,
we have |h(x)− h(x+ y)| ≤ µ(|y|), where

µ(r) =

{
−Mr log r, if |r| ≤ e−1,

Me−1, if |r| > e−1,

where M = ‖h‖LL. Thus, when r ≤ e−1,

Sµ(r) = −M
∫ r

0
log s ds = M(r − r log r).

Noting that Sµ(e−1) = Me−1, when r > e−1 we have

Sµ(r) = Sµ(e−1) +

∫ r

e−1

Me−1

s
ds = Me−1 +Me−1(log r − log e−1).

Further, when r > e−1,

r

∫ ∞
r

µ(s)

s2
ds = r

∫ ∞
r

Me−1ds

s2
= Me−1

r

r
= Me−1,

and when r < e−1,

r

∫ ∞
r

µ(s)

s2
ds = −r

∫ e−1

r

M log s

s
ds+ r

∫ ∞
e−1

Mds

s2

= −Mr
1

2

[
(log s)2

]e−1

r
+Mre−1 =

M

2
r
[
1 + (log r)2

]
+Mre−1.

Applying Lemma 8.1, then, for r > e−1,

ν(r) = CM (log r + 1) (8.2)
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while for r ≤ e−1,
ν(r) = CMr

[
− log r + (log r)2

]
,

which gives the MOC for q for small argument. �

Remark 8.3. As we can see from the proof of Lemma 8.2, the logarithmic
bound on the growth of q at infinity comes from the L∞-norm of h plus
Sµ(e−1). Thus, such a logarithmic bound would hold for any h in L∞(R2)
as long as it also has some Dini MOC. Note, however, that h ∈ L∞, which
would imply q ∈ BMO, is not by itself sufficient to obtain such a bound.
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